
A Modular Pipeline Software Architecture for Radar
Signal Processing

Krushi Deep M, S L Kumar, Kiran Manju D,
Traana Technologies Pvt Ltd, HBR layout, Bangalore 560 043, Karnataka, India

 Suchith Rajagopal, Vaidya Dhavalkumar Bipinchandra

 Electronics and Radar Development Establishment, DRDO, C.V.Raman Nagar, Bangalore-560093. Karnataka, India

krushi@traana.in

Abstract

This architecture is built around the concept of creating a
processing pipeline, with each elemental signal processing
algorithm being realized as an independent filter, and, the entire
signal processing requirements for a mode being realized by
stringing together the required filters as a pipeline. The
architecture is scalable in terms of different processing pipelines
being able to be created in different processing cores, thus, allowing
the radar system designer to add or subtract processor cores based
on the processing needs. Bringing in multiple processor cores
brings in the additional challenges as the radar signal processing
does switch between ranges based processing to pulse based
processing. The other dimension of scalability that this architecture
provides is the ability to add new signal processing steps or modes
in form of new filters or pipeline.

Keywords— Modular, Pipeline Software, Radar Singal Processing,
Multicore, Memory Manager, Error Handling, Architecture

I. INTRODUCTION
With the availability of ever-increasing processing bandwidths
offered by the present day multi-core processors, Radar Signal
Processing is being increasingly moved to the software realm
from it being predominantly being implemented in hardware.
The modern day airborne radars bring with them the added
complexities of having to handle multiple modes of
operations, and these modes of operations being rapidly
switched.

 This paper introduces a Modular Pipeline Architecture for
implementing the airborne radar signal processing algorithms
in software. This architecture introduces modular signal
processing elements in the from of an independent filter, these
elements are stitched together to from a required signal
processing pipeline. Each filter has an active as well as a
passive part. While the active part runs on an independent
thread realising the actual processing algorithm, the passive
part comes into play during the pipeline setup and destroy
phases.

 The setting up of a pipeline, and its subsequent tear down, is
controlled by a System Manager, which also handles

configuration management aspects. A Memory Manager
module helps in managing the limited available memory
across the different filters, and, is the main vehicle through
which the data flows down the pipeline, as it is getting
processed.

This architecture has been realized on Multi-core PowerPC
processors on a Mercury HCD6220 COTS board and has been
demonstrated to meet the hard real time constraints as well as
the system memory constraints.

Subsequent sections of this paper explain the software
architecture overview and its build blocks.

II. SOFTWARE ARCHITECTURE OVERVIEW

Figure 1 Modular Pipeline Software Architecture.

The hardware layer represents the underlying PowerPC cores
available for signal processing on the Mercury HCD6220
COTS board.

The software itself is built on four different layers. The infra
layer houses the essential RTOS VxWorks, the computational
algorithms powered by Scientific Algorithms Library (SAL)
developed by Mercury Inc and the memory manager catering
for all the memory requirements.

The Filter Layer consists of all the algorithms required for
signal processing in different modes of operation in the form
of filters and they are used to form the processing pipeline as
required.

10th International Radar Symposium India - 2015 (IRSI - 15)

NIMHANS Convention Centre, Bangalore INDIA 1 of 4 15-19 December 2015

mailto:krushi@traana.in

The control layer is in charge of providing input and output
interfaces along with the system manager. The pipeline
manager and the configuration parameter manager together
form the system manager to support and coordinate the mode
specific activities like pipeline formation and then trigger the
data processing.

III. FILTER ARCHITECTURE
Filters are the fundamental and independent blocks of the
algorithm in this architecture. Though the functionalities of
filters vary widely, but they all provide uniform & standard
interfaces to the control layer above. This enables to describe
all filters through a set of standard interface methods. These
methods, called filter template methods, are implemented by
each of the filters without violating the interface
specifications.

For realizing this goal the following design is visualized. Each
filter will be consisting of “Passive” and “Active”
components. While “Passive” part is a set of static routines
which are called and executed in the context of “caller”,
“Active” part has its own thread of control task for execution.
All the method of invocations are dispatched as messages. It
can be seen from the figure below that the data processing
continues while commands are queued up in Message-Q by
the passive component of the filter.

Figure 2 Filter structure

A filter, is a generic component, encapsulates a specific
algorithm/functionality. Each filter can be instantiated to a
max allowed number in a pipeline. Thus, if a “filter F”
participates three times in a mode processing pipeline, there
will be three instances of filter F. Apart from sharing the
implementation other resources like Task/Thread and Memory
Segments are claimed and released by the active instance and
hence shared between instances.
.

IV. PIPELINE MANAGER
The major design pattern of SP filter layer is the pipes and
filters pattern. A pipeline consists of a chain of processing
filters or elements, arranged according to the data processing
requirement of operating mode.

The pipe connects one filter to the next, sending output
messages from one filter to the next. Thus the control or data
can flow from one filter to the next through the pipe
established during the connection process. These filters in a
pipeline can be rearranged or recombined to achieve specific
functional requirement of mode, all without having to change
the filters themselves.

For a pipeline, filter connection sequence is captured through
text files rather than embedding in code. This gives the
flexibility of modifying Pipeline without re-doing the code.
Thus this text file contains the list of filters involved in
specific mode of operation

Figure 3 Pipeline data flow

The Pipeline Manager, using the above text file, establishes
the connection between each of filters involved in specific
mode of operation.

V. SYSTEM MANAGER (SYSMGR)

Figure 4 System Manager Operation sequence

10th International Radar Symposium India - 2015 (IRSI - 15)

NIMHANS Convention Centre, Bangalore INDIA 2 of 4 15-19 December 2015

System Manger(SysMgr) is the core component of the Signal
Processing (SP) system. Figure 5 represents the normal
operating sequence of the System Manager. The System
Manager performs following functionalities: On power-on,the
Power-on Self-Test (POST) is done during which pre-defined
parameters of the system are checked. After successful POST,
it continues with SP initialization sequence. SysMgr initializes
the MemMgr and all other relevant modules in the system.

After this stage, system is ready to handle the valid data via
input interface.

VI. MEMORY MANAGER

Memory Manager Component is responsible for controlling
and handling the system memory requirements of the filters in
the Signal Processing modes. It creates and maintains a pool
of multi-sized memory segments. These memory segments
are dynamically requested, used & released by the filters.

The sizes & number of different memory segments are
configurable. Therefore it is scalable. The Memory Manager
mainly emphasizes on reusability of the memory segments

The Memory Manager provides various APIs through which
the memory segments can be dynamically requested or
released. A filter which requires a new memory segment
would request the Memory Manager for the memory segment
of specific size by calling the API, AllocateSegment(). The
Memory Manager on receiving the request provides suitable
sized segment available from the pool.

The Memory manager keeps track of the number of filters
which are currently using the memory segment. It also keeps
track of memory segments under use and free to be allocated.
In case, the subsequent filter wants to use the same memory
segment, then it has to call the API, HoldSegment(). When the
segment is no longer required, the filter can release it. This is
accomplished by calling ReleaseSegment(). Only when all the
filters which had held the memory segment release it, then it
will be available for allocation on filter’s request.

Figure 5 Memory Manager

Thus system memory is effectively used in the design. During
Memory Manager termination, these memory segments are
freed.

Bringing in multiple processor cores brings in the additional
challenges as the radar signal processing does switch between
range based processing to pulse based processing. The
concept of 'scatter-gather' of data is built into the architecture,
by which a single burst data is 'scattered' to the various
available cores for processing, 'gathered' and assembled back
before it is sliced in the other dimension and scattered back to
the different cores for subsequent processing.

VII. CONFIGURATION PARAMETER MANAGEMENT

The data received from the Data Acquisition System will also
contain Control information along with the target returns. This
Control information is parsed by the System Manager and
stored in a data structure. This structure contains various radar
parameters which are used for Data Processing by filters in the
pipeline.

The filters query the Configuration structure for the required
parameter which is necessary for data processing. The
received Control Word information may change every burst
(Bunch of transmitted pulses grouped together) and is updated
by the Configuration Management. After each burst, the filters
in the pipeline make use of updated Configuration structure.

The Configuration Management System provides scalability
as any number of new Radar parameters can be added with
least amount of software design change.

Figure 6 Configuration manager

VIII. CONCLUSION
The complex problems in Radar Signal Processing such as
processing large amount of data, handling multiple modes of
operation and switching rapidly between these modes are
addressed by adopting the modular Pipeline Software
Architecture. The signal processing steps/units called filters
provide features such as scalability and reusability.

It was observed that the data was processed with less than
50% of the total available time.

ACKNOWLEDGEMENT

The authors would like to thank The Director LRDE and
Radar V, Divisional Officer for all the encouragement
provided for this implementation and study. The authors wish
to acknowledge the support of Scientists and Technicians of
LRDE, Bangalore, associated with the design and
development of Active Electronically Scanned Array Radar.

10th International Radar Symposium India - 2015 (IRSI - 15)

NIMHANS Convention Centre, Bangalore INDIA 3 of 4 15-19 December 2015

REFERENCES

[1] Software Architecture Perspectives on an Emerging Discipline by Mary

Shaw, David Garlan, Eastern Economy Edition, Prentice-Hall India
[2] An Embedded Software Premier, David E. Simon, LPE, Addison-

WESLEY
[3] “VxWorks Application programmer’s guide “6.7, Wind River.
[4] “Scientific Algorithm Library (SAL): Reference Guide” TC-SAL-RM-

750, 2006/08, Mercury Computer Systems, Inc.
[5] “Introduction to Radar Systems”, Third edition, Skolnik, TATA

McGraw Hill.

BIO DATA OF AUTHORS

 Krushi Deep M received the M.S. degree in
Embedded Systems and Design from Manipal
University in 2012 and the B.E degree in
Telecommunication from the VTU Belgaum in

2009. He joined Traana Technologies Private limited,
Bangalore in 2012, where he is currently Systems Head. His
areas of interest are Signal Processing, Design and
development of Algorithms

 S. L. Kumar, was born in 1972 at Kadukkarai,
Kanyakumari Dist. He received his B.E., degree
in Electronics & Communication Engineering
from Bharathidasan University, Tiruchirappalli
in 1993. Having over 20 years of comprehensive

experience in Embedded System software, Architecture
definition & deployment and Product creation for Defence,
Semiconductors, Consumer Electronics and Mobile Industries.
His current areas of interests include emerging technologies
around IoT.

 Kiran Manju D received the M.S. degree in
Embedded Systems and Design from Manipal
University in 2013 and the B.E degree in
Electronics and Communication from the VTU
Belgaum in 2010. He joined Traana

Technologies Private limited, Bangalore in 2013, where he is
currently Member of Technical Staff, R&D. His areas of
interest are Signal Processing and Systems Engineering.

ngineering

 Suchith Rajagopal obtained his B.E. degree in
Electronics & Communication Engineering in
1995 from Calicut University and M.E. degree in
Computer Science Engineering in 2010 from IIT
Madras. His Current area of interests includes

radar system e

 Vaidya Dhavalkumar Bipinchandra was born in
1984 at Surat, Gujarat. He obtained Electronics
Engineering degree from NIT,Surat in 2005.
He joined Electronics and Radar Development
Establishment (LRDE), Bangalore in 2006 as a

Scientist. His areas of interests are design and development of
signal processor for airborne Radar.

10th International Radar Symposium India - 2015 (IRSI - 15)

NIMHANS Convention Centre, Bangalore INDIA 4 of 4 15-19 December 2015

	Index
	Session 7
	Author Index

